Subject-specific modelling of paired comparison data: A lasso-type penalty approach

Author:

Schauberger Gunther1,Tutz Gerhard1

Affiliation:

1. Department of Statistics, Ludwig-Maximilians-Universität München, Germany.

Abstract

In traditional paired comparison models heterogeneity in the population is simply ignored and it is assumed that all persons or subjects have the same preference structure. In the models considered here the preference of an object over another object is explicitly modelled as depending on subject-specific covariates, therefore allowing for heterogeneity in the population. Since by construction the models contain a large number of parameters we propose to use penalized estimation procedures to obtain estimates of the parameters. The used regularized estimation approach penalizes the differences between the parameters corresponding to single covariates. It enforces variable selection and allows to find clusters of objects with respect to covariates. We consider simple binary but also ordinal paired comparisons models. The method is applied to data from a pre-election study from Germany.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3