Response transformations for random effect and variance component models

Author:

Almohaimeed Amani12,Einbeck Jochen23

Affiliation:

1. Department of Mathematics, College of Science and Arts, Qassim University, Oyoon Aljawa, Saudi Arabia.

2. Department of Mathematical Sciences, Durham University, Durham, UK.

3. Durham Research Methods Centre, Durham University, Durham, UK.

Abstract

Random effect models have been popularly used as a mainstream statistical technique over several decades; and the same can be said for response transformation models such as the Box–Cox transformation. The latter aims at ensuring that the assumptions of normality and of homoscedasticity of the response distribution are fulfilled, which are essential conditions for inference based on a linear model or a linear mixed model. However, methodology for response transformation and simultaneous inclusion of random effects has been developed and implemented only scarcely, and is so far restricted to Gaussian random effects. We develop such methodology, thereby not requiring parametric assumptions on the distribution of the random effects. This is achieved by extending the ‘Nonparametric Maximum Likelihood’ towards a ‘Nonparametric profile maximum likelihood’ technique, allowing to deal with overdispersion as well as two-level data scenarios.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3