Multi-class classification of biomechanical data: A functional LDA approach based on multi-class penalized functional PLS

Author:

Aguilera-Morillo M. Carmen1,Aguilera Ana M.2

Affiliation:

1. Department of Statistics, Escuela Politécnica Superior and UC3M-BS Santander Big Data Institute, Universidad Carlos III de Madrid, Madrid, Spain.

2. Department of Statistics and O. R. and IEMath-GR, Facultad de Ciencias, Universidad de Granada, Granada, Spain.

Abstract

A functional linear discriminant analysis approach to classify a set of kinematic data (human movement curves of individuals performing different physical activities) is performed. Kinematic data, usually collected in linear acceleration or angular rotation format, can be identified with functions in a continuous domain (time, percentage of gait cycle, etc.). Since kinematic curves are measured in the same sample of individuals performing different activities, they are a clear example of functional data with repeated measures. On the other hand, the sample curves are observed with noise. Then, a roughness penalty might be necessary in order to provide a smooth estimation of the discriminant functions, which would make them more interpretable. Moreover, because of the infinite dimension of functional data, a reduction dimension technique should be considered. To solve these problems, we propose a multi-class approach for penalized functional partial least squares (FPLS) regression. Then linear discriminant analysis (LDA) will be performed on the estimated FPLS components. This methodology is motivated by two case studies. The first study considers the linear acceleration recorded every two seconds in 30 subjects, related to three different activities (walking, climbing stairs and down stairs). The second study works with the triaxial angular rotation, for each joint, in 51 children when they completed a cycle walking under three conditions (walking, carrying a backpack and pulling a trolley). A simulation study is also developed for comparing the performance of the proposed functional LDA with respect to the corresponding multivariate and non-penalized approaches.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3