A multilevel analysis of real estate valuation using distributional and quantile regression

Author:

Razen Alexander1,Brunauer Wolfgang2,Klein Nadja3,Kneib Thomas4,Lang Stefan1,Umlauf Nikolaus1

Affiliation:

1. Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Austria

2. Data Science Service GmbH, Vienna, Austria

3. Research Center Trustworthy Data Science and Security (UA Ruhr) and Department of Statistics (Technische Universität Dortmund), Germany

4. Faculty of Business and Economic Sciences & Campus Institute Data Science, Georg-August-University Göttingen, Germany

Abstract

Real estate valuation is typically based on hedonic regression models where the expected price of a property is explained in dependence of its attributes. However, investors in the housing market are equally interested in the distribution of real estate market values (including price variation), that is, determining the impact of attributes of a property on the entire conditional distribution. We therefore consider Bayesian structured additive distributional and quantile regression models for real estate valuation. In the first approach, each parameter of a potentially complex parametric response distribution is related to a structured additive predictor. In contrast, the second approach proceeds differently and models arbitrary quantiles of the response distribution directly and nonparametrically. Both models presented are based on a multilevel version of structured additive regression thereby utilizing the typical hierarchical structure of real estate data. We demonstrate the proposed methodology within a detailed case study based on more than 3 000 owner-occupied single family homes in Austria, discuss interpretation of the resulting effect estimates, and compare models based on their predictive ability.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3