Predicting match outcomes in association football using team ratings and player ratings

Author:

Arntzen Halvard1,Hvattum Lars Magnus1

Affiliation:

1. Faculty of Logistics, Molde University College, Norway.

Abstract

The main goal of this article is to compare the performance of team ratings and individual player ratings when trying to forecast match outcomes in association football. The well-known Elo rating system is used to calculate team ratings, whereas a variant of plus-minus ratings is used to rate individual players. For prediction purposes, two covariates are introduced. The first represents the pre-match difference in Elo ratings of the two teams competing, while the second is the average difference in individual ratings for the players in the starting line-ups of the two teams. Two different statistical models are used to generate forecasts. The first type is an ordered logit regression (OLR) model that directly outputs probabilities for each of the three possible match outcomes, namely home win, draw and away win. The second type is based on competing risk modelling and involves the estimation of scoring rates for the two competing teams. These scoring rates are used to derive match outcome probabilities using discrete event simulation. Both types of models can be used to generate pre-game forecasts, whereas the competing risk models can also be used for in-game predictions. Computational experiments indicate that there is no statistical difference in the prediction quality for pre-game forecasts between the OLR models and the competing risk models. It is also found that team ratings and player ratings perform about equally well when predicting match outcomes. However, forecasts made when using both team ratings and player ratings as covariates are significantly better than those based on only one of the ratings.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3