Competing risks joint models using R-INLA

Author:

Niekerk Janet van1,Bakka Haakon1,Rue Håvard1

Affiliation:

1. CEMSE Division, King Abdullah University of Science and Technology, Saudi Arabia.

Abstract

The methodological advancements made in the field of joint models are numerous. None the less, the case of competing risks joint models has largely been neglected, especially from a practitioner's point of view. In the relevant works on competing risks joint models, the assumptions of a Gaussian linear longitudinal series and proportional cause-specific hazard functions, amongst others, have remained unchallenged. In this article, we provide a framework based on R-INLA to apply competing risks joint models in a unifying way such that non-Gaussian longitudinal data, spatial structures, times-dependent splines and various latent association structures, to mention a few, are all embraced in our approach. Our motivation stems from the SANAD trial which exhibits non-linear longitudinal trajectories and competing risks for failure of treatment. We also present a discrete competing risks joint model for longitudinal count data as well as a spatial competing risks joint model as specific examples.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3