Repeated responses in misclassification binary regression: A Bayesian approach

Author:

Pires Magda Carvalho1,Quinino Roberto da Costa1

Affiliation:

1. Department of Statistics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Abstract

Binary regression models generally assume that the response variable is measured perfectly. However, in some situations, the outcome is subject to misclassification: a success may be erroneously classified as a failure or vice versa. Many methods, described in existing literature, have been developed to deal with misclassification, but we demonstrate that these methods may lead to serious inferential problems when only a single evaluation of the individual is taken. Thus, this study proposes to incorporate repeated and independent responses in misclassification binary regression models, considering the total number of successes obtained or even the simple majority classification. We use subjective prior distributions, as our conditional means prior, to evaluate and compare models. A data augmentation approach, Gibbs sampling, and Adaptive Rejection Metropolis Sampling are used for posterior inferences. Simulation studies suggested that repeated measures significantly improve the posterior estimates, in that these estimates are closer to those obtained in a case with no misclassifications with a lower standard deviation. Finally, we illustrate the usefulness of the new methodology with the analysis about defects in eyeglass lenses.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3