Bayesian analysis of two-part nonlinear latent variable model: Semiparametric method

Author:

Gou Jian-Wei1,Xia Ye-Mao1,Jiang De-Peng2

Affiliation:

1. Department of Applied Mathematics, School of Science, Nanjing Forestry University, Nanjing, Jiangsu, China

2. Department of Community Health Sciences, University of Manitoba, Manitoba, Canada

Abstract

Two-part model (TPM) is a widely appreciated statistical method for analyzing semi-continuous data. Semi-continuous data can be viewed as arising from two distinct stochastic processes: one governs the occurrence or binary part of data and the other determines the intensity or continuous part. In the regression setting with the semi-continuous outcome as functions of covariates, the binary part is commonly modelled via logistic regression and the continuous component via a log-normal model. The conventional TPM, still imposes assumptions such as log-normal distribution of the continuous part, with no unobserved heterogeneity among the response, and no collinearity among covariates, which are quite often unrealistic in practical applications. In this article, we develop a two-part nonlinear latent variable model (TPNLVM) with mixed multiple semi-continuous and continuous variables. The semi-continuous variables are treated as indicators of the latent factor analysis along with other manifest variables. This reduces the dimensionality of the regression model and alleviates the potential multicollinearity problems. Our TPNLVM can accommodate the nonlinear relationships among latent variables extracted from the factor analysis. To downweight the influence of distribution deviations and extreme observations, we develop a Bayesian semiparametric analysis procedure. The conventional parametric assumptions on the related distributions are relaxed and the Dirichlet process (DP) prior is used to improve model fitting. By taking advantage of the discreteness of DP, our method is effective in capturing the heterogeneity underlying population. Within the Bayesian paradigm, posterior inferences including parameters estimates and model assessment are carried out through Markov Chains Monte Carlo (MCMC) sampling method. To facilitate posterior sampling, we adapt the Polya-Gamma stochastic representation for the logistic model. Using simulation studies, we examine properties and merits of our proposed methods and illustrate our approach by evaluating the effect of treatment on cocaine use and examining whether the treatment effect is moderated by psychiatric problems.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3