Spatial smoothing revisited: An application to rental data in Munich

Author:

Fahrmeir Ludwig1,Kauermann Göran1,Tutz Gerhard1,Windmann Michael1

Affiliation:

1. Institut für Statistik, München, Germany

Abstract

Spatial smoothing makes use of spatial information to obtain better estimates in regression models. In particular flexible smoothing with B-splines and penalties, which has been propagated by Eilers and Marx (1996) , provides strong tools that can be used to include available spatial information. We consider alternative smoothing methods in spatial additive regression and employ them for analysing rental data in Munich. The first method applies tensor product P-splines to the geolocation of apartments, measured on a continuous scale through the centroid of the quarter where an apartment is. The alternative approach exploits the neighbourhood structure of districts on a discrete scale, where districts consist of a set of neighbouring quarters. The discrete modelling approach yields smooth estimates when using ridge-type penalties but can also enforce spatial clustering of districts with a homogeneous structure when using Lasso-type penalties.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3