A matrix-variate dirichlet process to model earthquake hypocentre temporal patterns

Author:

A. Ray Meredith1,Bowman Dale2,Csontos Ryan3,Van Arsdale Roy B.3,Zhang Hongmei1

Affiliation:

1. Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis School of Public Health, Memphis, Tennessee, USA.

2. Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee, USA.

3. Department of Earth Sciences, University of Memphis, Memphis, Tennessee, USA.

Abstract

Earthquakes are one of the deadliest natural disasters. Our study focuses on detecting temporal patterns of earthquakes occurring along intraplate faults in the New Madrid seismic zone (NMSZ) within the middle of the United States from 1996–2016. Based on the magnitude and location of each earthquake, we developed a Bayesian clustering method to group hypocentres such that each group shared the same temporal pattern of occurrence. We constructed a matrix-variate Dirichlet process prior to describe temporal trends in the space and to detect regions showing similar temporal patterns. Simulations were conducted to assess accuracy and performance of the proposed method and to compare to other commonly used clustering methods such as Kmean, Kmedian and partition-around-medoids. We applied the method to NMSZ data to identify clusters of temporal patterns, which represent areas of stress that are potentially migrating over time. This information can then be used to assist in the prediction of future earthquakes.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3