Divergent Strategies of Epiphytic Pteridophytes and Angiosperms Responding to Dry and Wet Seasons in a Tropical Cloud Forest

Author:

Li Xuanru123,Long Wenxing123ORCID,Zhang Hui123,Huang Jin45,Cheng Yikang1,Jiang Huan6,Liao Lingcong123,Tan Zhaoyuan123

Affiliation:

1. College of Forestry, Hainan University, Haikou, China

2. Wuzhishan National Long Term Forest Ecosystem Research Station

3. Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan University, Haikou, China

4. Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China

5. School of Life and Pharmaceutical Science, Hainan University, Haikou, China

6. Hainan Branch Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Haikou, China

Abstract

Epiphyte is a unique component of forest diversity vulnerable to changing environments. Characterizing variations in functional traits of epiphytes across dry and wet seasons can enhance our understanding their strategies to environments. We measured and assessed variations of 14 leaf functional traits responding to water conditions for epiphytic pteridophytes (EP) and epiphytic angiosperms (EA) across dry and wet seasons in a tropical cloud forest. Results showed that leaf dry weight (LDW) and stomatal length (SL) of EP were significantly higher than EA, while leaf water content (LWC) of EA was significantly higher than EP. The SL, stomatal density (SD), upper epidermis thickness (UET), lower epidermis thickness (LET), palisade tissue thickness (PT), spongy tissue thickness (ST), and leaf thickness (LT) of EP and EA were significantly higher in wet season than dry season. The variance of stomatal and anatomical traits explained by season types (0.24–0.78) was higher than plant groups (0.0–0.25), while the variance of LDW and LWC explained by plant groups (0.12–0.40) was higher than season types (0.0–0.29). Principal component analysis and correlation analyses showed that SL, stomatal index, UET, ST, LET, and LT were the key traits reflecting epiphyte adaptation to dry season, as well as that LWC and leaf density were the key traits in wet season. Our results suggest that the different taxonomic groups exhibit divergent strategies responding to water differences. Great variations in leaf traits to dry seasons are predicted that vascular epiphytes, especially pteridophytes, are prone to disappear with drought events.

Publisher

SAGE Publications

Subject

Nature and Landscape Conservation,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3