Landscape Attributes Drive Complex Spatial Microclimate Configuration of Brazilian Atlantic Forest Fragments

Author:

Pinto Severino R.R.1,Mendes Gabriel1,Santos André M.M.2,Dantas Mateus1,Tabarelli Marcelo1,Melo Felipe P. L.13

Affiliation:

1. Departamento de Botânica, Centro de CiěnciasBiológicas, Universidade Federal de Pernambuco. Av. Professor Moraes Rěgo S/N. Recife, PE, Brazil. 50670-901

2. Centro Acaděmico de Vitória, Universidade Federal de Pernambuco, Rua Alto do Reservatório, s/n Bela Vista, Vitoria de Santo Antão, PE, Brazil. 50010-921

3. Centro de Pesquisas Ambientais do Nordeste – Cepan. Av. Caxangá, 5775, sala 05, Várzea, Recife – PE, 50740-000

Abstract

Habitat fragmentation imposes profound impacts on the tropical forest microclimate, but the microclimatic configuration of isolated forest patches and its implications for biodiversity persistence and habitat management are not clear. In this study we assessed a set of 10 aged (> 80 years) fragments (3.0 – 3,500 ha in size) of the Atlantic forest to examine to what extent fragment microclimatic attributes are correlated with distance to the nearest edge as frequently proposed in the literature. We used 129 sampling points and took a total of 516 measures of air temperature and humidity, vapor pressure deficit and light incidence to characterize the microclimate of forest fragments in terms of their relative deviation from the surrounding matrix. Fragments as a whole presented strong internal variation and strongly differed from the microclimate exhibited by the open matrix of sugar-cane fields. Distance to nearest edge, percentage of forest cover around the measurement point, percentage of edge-affected area, and geographical orientation of the nearest edge all proved to have minor effects on the microclimate of forest fragments. Conversely, we identified percentage of forest cover and fragment area as the most significant explanatory variables driving their microclimatic configuration: as forest cover increases at landscape scale, forest microclimate deviates less from the open matrix (a forest-mediated matrix buffering). Our results suggest that microclimatic conditions are spatially complex, as they do not correlate with the distance to the nearest forest edges; rather, they are driven by a forest-mediated buffering of the surrounding matrix that minimizes heat and humidity exchanges between forest and non-forest habitats, thus shaping the microclimatic signature of isolated forest fragments.

Publisher

SAGE Publications

Subject

Nature and Landscape Conservation,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3