6-Amino-chrysene, a potent inhibitor of transferase activity in single living RTG2 cells.

Author:

Lautier D,Salmon J M,Anthelme B,Viallet P

Abstract

Previous reports on the inhibitory effect of 6-amino-chrysene (6AC) on benzo(a)pyrene (BP) metabolism using single living cells have suggested that aryl hydrocarbon hydroxylase (AHH) is not the only pathway for 6AC metabolism. We present here results demonstrating that direct glucuronidation may constitute an alternative pathway for 6AC elimination. First, we describe the conjugate of 6AC to UDP-glucuronic acid (UDPGA) in solution. We performed competition experiments between 6AC and monohydroxy BP, which are known to be good substrates for glucuronic transferase (GT), in RTG2 cells, using microspectrofluorimetry. Because of intracellular accumulation of fluorescent metabolites during BP metabolism, RTG2 cells can be used as a tool for simultaneous study of AHH and GT activities. When RTG2 cells have been simultaneously treated with BP and 6AC, GT appeared to be a more specific target for 6AC than AHH in these cells. Therefore, 6AC can be expected to act as a more specific inhibitor for GT than for AHH activity.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3