ATOVis – A visualisation tool for the detection of financial fraud

Author:

Maçãs Catarina1ORCID,Polisciuc Evgheni1,Machado Penousal1

Affiliation:

1. Department of Informatics Engineering, University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Abstract

Fraud detection is related to the suppression of possible financial losses for institutions and their clients. It is a task of high responsibility and, therefore, an important phase of the decision-making chain. Nowadays, experts in charge base their analysis on tabular data, usually presented in spreadsheets and seldom supplemented with simple visualisations. However, this type of inspection is laborious, time-consuming, and may be of little use for the analysis and overview of complex transactional data. To aid in the inspection of fraudulent activities, we develop ATOVis – a visualisation tool that enables a fast analysis and detection of suspicious behaviours. We aim to ease and accelerate fraud detection by providing an overview of specific patterns within the data, and enabling details on demand. ATOVis focuses on applying visualisation techniques to the Finance domain, specifically e-commerce, contributing to the state-of-the-art as the first visualisation tool primarily specialised in Account Takeover (ATO) patterns. In particular, the present paper incorporates: a task abstraction for detecting a specific financial fraud pattern – ATO; two models for the visualisation of ATO; and a multiscale timeline to enable an overview of the data. We also validate our tool through user testing, with experts in fraud detection and experts from other fields of data science. Based on the feedback provided by the analysts, we could conclude that ATOVis is an efficient and effective tool in detecting specific patterns of fraud which can improve the analysts’ work.

Funder

Fundação para a Ciência e a Tecnologia

European Social Fund

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FraudAuditor: A Visual Analytics Approach for Collusive Fraud in Health Insurance;IEEE Transactions on Visualization and Computer Graphics;2023-06-01

2. Web Performance Evaluation of High Volume Streaming Data Visualization;IEEE Access;2023

3. ОСТАННІ ТЕНДЕНЦІЇ ФІНАНСОВОЇ ЗЛОЧИННОСТІ СВІТУ;Financial and credit activity problems of theory and practice;2022-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3