Voronoi treemap in Manhattan distance and Chebyshev distance

Author:

Wang Yan Chao1ORCID,Xing Yidan1,Zhang Jie1

Affiliation:

1. Nanyang Technological University, Singapore, Singapore

Abstract

The ordinary Voronoi treemap generated based on the Euclidean distance function has the flexibility to slightly adjust the layout when visualizing time-varying hierarchical data for better visual quality, preserving neighborhood relationships, and preserving a stable layout. However, its layout formed by segments with arbitrary orientations has poor shape stability between successive layouts at different time indexes, which is not conducive for the users to understand the plot and track the same node. In this paper, we propose novel Voronoi treemaps in Manhattan distance and Chebyshev distance respectively, such that the segments in the new layouts only have four orientations (horizontal, vertical, and ±45° to the [Formula: see text]-axis). The new layouts can not only heritage the abilities of ordinary Voronoi treemap, but preserve good shape stability. To achieve this, we first focus on the weighted bisector between two sites in Manhattan distance and design a bisector generation method for different weight values of two sites, as the bisector is the foundation to form a diagram. Then a divide-and-conquer method is utilized to form the bisectors into a Voronoi diagram, and a Voronoi treemap layout can be finally obtained by using Lloyd’s method to iteratively adjust the diagram. Moreover, we prove that the treemap algorithm in Manhattan distance can be adjusted to also generate the Voronoi treemap in Chebyshev distance via linear transformation, avoiding designing additional algorithm. The computational properties of the proposed methods are first evaluated to check whether the layouts can be generated fast and accurately. Then the perceptual properties are evaluated quantitatively and qualitatively based on quality metrics and user studies, respectively. The results demonstrate that the proposed Voronoi treemaps preserve similar layout stability, but better visual quality and shape stability than the ordinary Voronoi treemap. Our algorithms are simple and resolution-independent, but also provide alternatives to the Voronoi treemaps.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3