Interactive visual formula composition of multidimensional data classifiers

Author:

Derstroff Adrian1ORCID,Leistikow Simon1,Nahardani Ali2,Gruen Katja3,Franz Marcus3,Hoerr Verena2,Linsen Lars1

Affiliation:

1. Institute of Computer Science, University of Münster, Münster, Germany

2. Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany

3. Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology, and Intensive Medical Care, Jena University Hospital, Jena, Germany

Abstract

Understanding how a classification result is generated and what role individual features play in the classification is crucial in many applications and, in particular, in medical contexts such as the translation of diagnosis biomarkers into clinical practice. The goal is to find (ideally simple) relationships between the features in multi-dimensional data and the classification for an explanation of the underlying phenomenon. Mathematical formulas allow for the expression of these relationships and can serve as classifiers. However, there are infinitely many mathematical formulas for the given features and they bear an inherent trade-off between complexity and accuracy. We present an interactive visual approach that supports domain experts to mitigate the trade-off issue. Core to our approach is a novel feature selection method, from which formulas are composed using symbolic regression and where state-of-the-art classifiers serve as a reference. To evaluate our approach and compare the achieved classification performance to the performance achieved by other state-of-the-art feature selection techniques, we test our methods with well-known machine learning data sets. Our evaluation shows that our feature selection method performs better than randomly selecting features for data sets with many features or when a low number of generations in the symbolic regression is required. Moreover, it consistently matches or outperforms state-of-the-art methods. Moreover, we apply our approach in a case study to a hemodynamic cohort data set, where we report our findings and domain expert feedback. Our approach was able to find formulas containing features that are in agreement with literature. Also, we could find formulas that performed better in the micro-averaged F1 score when compared to established histological indices.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3