Interactive exploration of movement data: A case study of geovisual analytics for fishing vessel analysis

Author:

Enguehard René A1,Hoeber Orland1,Devillers Rodolphe1

Affiliation:

1. Memorial University of Newfoundland, St. John’s, NL, Canada

Abstract

The analysis of large movement datasets is a challenging task, because of their size and spatial complexity. This paper presents an interactive geovisual analytics approach named Hybrid Spatio-Temporal Filtering that integrates filtering of multiple movement characteristics, geovisual representations of the data, and multiple coordinated views to enable analysts to focus on movement patterns that are of interest. In particular, we propose a novel technique that combines the fractal dimension and velocity of movement paths to filter out uninteresting records through an iterative signature-building process. In order to allow analysts to explore the data at different scales of the movement path length, fractal dimension estimation is performed using an adjustable moving window technique. These tools are provided in conjunction with a probability-based zonal incursion tool to visually represent when the movement nears areas of interest. The outcome is a geovisual analytics system that allows analysts to specify a hybrid filter consisting of the desired movement path complexity, the length of the paths to consider, and the velocity range that represents specific types of behaviors. This filtering of the data supports analysts in identifying movement paths that match their specified interests, resulting in a reduction in the amount of data shown to the analyst. The utility of the approach was validated through field trials, wherein fisheries enforcement officers analyzed and explored fishing vessel movement data using the prototype system. The participants responded positively to the features of the system and the support it provided for their data analysis activities. The combination of fractal dimension, velocity, and temporal filtering helped them to effectively identify subsets of data that conformed to particular behavioral patterns of interest.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3