Automating statistical diagrammatic representations with data characterization

Author:

Millán-Martínez Pere1,Valero-Mora Pedro1

Affiliation:

1. Universitat de València, València, Spain

Abstract

The search for an efficient method to enhance data cognition is especially important when managing data from multidimensional databases. Open data policies have dramatically increased not only the volume of data available to the public, but also the need to automate the translation of data into efficient graphical representations. Graphic automation involves producing an algorithm that necessarily contains inputs derived from the type of data. A set of rules are then applied to combine the input variables and produce a graphical representation. Automated systems, however, fail to provide an efficient graphical representation because they only consider either a one-dimensional characterization of variables, which leads to an overwhelmingly large number of available solutions, a compositional algebra that leads to a single solution, or requires the user to predetermine the graphical representation. Therefore, we propose a multidimensional characterization of statistical variables that when complemented with a catalog of graphical representations that match any single combination, presents the user with a more specific set of suitable graphical representations to choose from. Cognitive studies can then determine the most efficient perceptual procedures to further shorten the path to the most efficient graphical representations. The examples used herein are limited to graphical representations with three variables given that the number of combinations increases drastically as the number of selected variables increases.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3