Visualizing congestion at large-scale events with an interactive-view system incorporating proximity-based networks

Author:

Morikoshi Sayaka1ORCID,Onishi Masaki2,Itoh Takayuki1

Affiliation:

1. Ochanomizu University, Japan

2. National Institute of Advanced Industrial Science and Technology, Japan

Abstract

Contact with infected individuals can lead to the spread of infectious diseases. During the COVID-19 pandemic, people were strongly urged to avoid the three Cs: closed spaces, crowded places, and close-contact settings. To hold large-scale events under such circumstances, reducing crowd congestion is key to preventing the further spread of infection. Therefore, identifying the pedestrian behaviors and walking patterns that pose a high risk of infection and utilizing them for effective crowd control is necessary. In this study, we propose an approach for visualizing walking paths while maintaining visibility from large-scale human flow data and representing both spatial and temporal features. The proposed method enables the visualization of the pedestrian proximity status as a network containing three components: a proximity network, proximity path, and pedestrian statistics that interact with each other. By operating the three components of this system interactively, we can observe the spatial and temporal features of situations with a high risk of infection during crowd congestion. An example of the operation of this system is presented by visualizing real-world human flow data measured at an event venue and identifying the proximity of the pedestrians.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3