Reinforcement learning-based controller for adaptive workflow scheduling in multi-tenant cloud computing

Author:

Suresh Kumar D1ORCID,Jagadeesh Kannan R1ORCID

Affiliation:

1. Computer of science and engineering, VIT University, Vellore, India

Abstract

Multi-tenancy is an essential feature in cloud computing and is a major component to achieve scalability and energy-efficient solution to gain high level of economic benefits. As the cloud, computing is gaining more audiences and high user base, the problem of scheduling the computational workflow for multi-tenant cloud scheduling is becoming a difficult task to achieve. In this study, we present a learning-based scheduler for catering heterogeneous software and hardware resources in the context of multi-tenant cloud computing. The experimentation has been carried out with the help of green cloud simulator and the results are compared with the state of the art techniques like minimum completion time, first come first serve and backfilling. The experimental results exhibit that the presented algorithm provides an effective means of utilizing cloud resources in addition with drastic reduction in cost of operation.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Education

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3