Affiliation:
1. Department of Finance in Economics and Management College, Anhui Agricultural University, Hefei, China
2. School of Business, Pingxiang University, Pingxiang, China
Abstract
The fluctuation of the stock market has always been a matter of great concern to investors. People always hope to judge the trend of the stock market through the trend of the K line, so as to obtain the price difference through trading, Therefore, it is a theoretical research concerned by the academic circles to carry out empirical research through big data stock volatility prediction algorithm, so as to establish a model to predict the trend of the stock market. After decades of development, China's stock market has gradually matured in continuous exploration. However, compared with the stock market in developed countries, there are still imperfections. For example, the market value of China's stock market does not improve well with economic growth. Year-on-year growth and the development of the real economy. By studying the historical data from 2002 to 2017, we use the Multivariate Mixed Criterion Fuzzy Model (MMCFM) to predict the price changes in the stock market, and obtain the market in China through error statistical analysis. (SSE) is more unstable than the US stock market. Therefore, Multivariate Mixing Criterion (MMC) can be used as a reference indicator to visually measure market maturity. In this paper, we establish a multivariate mixed criteria fuzzy model, and use big data to predict the stock volatility. The algorithm verifies the reliability and accuracy of the model, which has a good reference value for investors.
Funder
The research was supported by Dongchang College of Liaocheng University Shandong Liaocheng : On-line and Off-line Hybrid Teaching Innovation Model of Western Economics Course in Independent Colleges
Shandong Provincial Education Department Project:Research on the present situation and Countermeasures of Inclusive Finance in Liaocheng City
Subject
Electrical and Electronic Engineering,Education
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献