Affective emotion classification using feature vector of image based on visual concepts

Author:

Priya D Tamil1ORCID,Udayan J Divya1ORCID

Affiliation:

1. School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India

Abstract

Nowadays, deep learning technique becomes the most popular fast-growing machine learning method in an Artificial Neural Network. The Convolution Neural Network (CNN) is one of the deep learning architecture that has been applied in the field of image analysis and image classification. In this paper, we proposed a novel emotion learning model with a deep learning network. The aim of the learning model is to reduce the affective gap, that extracts the objects and background features of an image semantically, such as high-level and low-level features. These extracted features accompanied with few others and it is more effective in emotion prediction model based on visual concepts of image, that leads to better emotion recognition performance. For training and testing, the experiment is conducted on IAPS (International Affective Picture System) dataset, the Artistic Photos, and the Emotion-Image dataset. An experimental result shows that the proposed model combines visual-content and low-level features of the image that provides promising results for Affective Emotion Classification task.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3