Validation of a New Biomechanical Model to Measure Muscle Tone in Spastic Muscles

Author:

Lindberg Påvel G.12,Gäverth Johan13,Islam Mominul1,Fagergren Anders1,Borg Jörgen2,Forssberg Hans1

Affiliation:

1. Karolinska Institute, Stockholm, Sweden

2. Danderyd University Hospital, Stockholm, Sweden

3. Karolinska University Hospital, Stockholm, Sweden

Abstract

Background. There is no easy and reliable method to measure spasticity, although it is a common and important symptom after a brain injury. Objective. The aim of this study was to develop and validate a new method to measure spasticity that can be easily used in clinical practice. Methods. A biomechanical model was created to estimate the components of the force resisting passive hand extension, namely ( a) inertia (IC), ( b) elasticity (EC), ( c) viscosity (VC), and ( d) neural components (NC). The model was validated in chronic stroke patients with varying degree of hand spasticity. Electromyography (EMG) was recorded to measure the muscle activity induced by the passive stretch. Results. The model was validated in 3 ways: ( a) NC was reduced after an ischemic nerve block, ( b) NC correlated with the integrated EMG across subjects and in the same subject during the ischemic nerve block, and ( c) NC was velocity dependent. In addition, the total resisting force and NC correlated with the modified Ashworth score. According to the model, the neural and nonneural components varied between patients. In most of the patients, but not in all, the NC dominated. Conclusions. The results suggest that the model allows valid measurement of spasticity in the upper extremity of chronic stroke patients and that it can be used to separate the neural component induced by the stretch reflex from resistance caused by altered muscle properties.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MyotonPRO as a new valid tool for measuring cervical muscle tension. A reliability study;Logopedics Phoniatrics Vocology;2024-08-09

2. A Review of Robot-Assisted Hand Spasticity Assessment;IEEE Transactions on Human-Machine Systems;2024-08

3. Gait Reconstruction Strategy Using Botulinum Toxin Therapy Combined with Rehabilitation;Toxins;2024-07-19

4. Identification of Neural and Non-Neural Origins of Joint Hyper-Resistance Based on a Novel Neuromechanical Model;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

5. Virtual Reality Interventions to Improve Function After Stroke;Handbook of Research on Advances in Digital Technologies to Promote Rehabilitation and Community Participation;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3