Corticospinal Excitability Quantification During a Visually-Guided Precision Walking Task in Humans: Potential for Neurorehabilitation

Author:

Dambreville Charline12,Neige Cécilia123,Mercier Catherine124ORCID,Blanchette Andreanne K.124,Bouyer Laurent J.124ORCID

Affiliation:

1. Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, QC, Canada

2. Neuroscience Thematic Research Center, Université Laval, Quebec City, QC, Canada

3. PsyR2 Team, Centre Hospitalier Le Vinatier, INSERM U1028/CNRS UMR5292, Lyon Neurosciences Research Center, Université Claude Bernard Lyon 1, Bron, France

4. Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada

Abstract

The corticospinal tract has been shown to be involved in normal walking in humans. However, its contribution during more challenging locomotor tasks is still unclear. As the corticospinal tract can be a potential target to promote gait recovery after neurological injury, it is of primary importance to quantify its use during human walking. The aims of the current study were to: (1) quantify the effects of precision walking on corticospinal excitability as compared to normal walking; (2) assess if corticospinal modulation is related to task difficulty or participants’ performance. Sixteen healthy participants walked on a treadmill during 2 tasks: regular walking (simple task) and stepping onto virtual targets (precision task). Virtual targets appeared randomly at 3 different step lengths: preferred, and ±20%. To assess corticospinal excitability, 25 motor evoked potentials (MEPs) were recorded from the tibialis anterior muscle in each task during walking. Performance for each participant (global success score; % of target hit) and task difficulty related to step length adjustments (success score for each step length) were also calculated. MEP size was larger during the precision task in all participants (mean increase of 93% ± 72%; P < .05) compared to the simple task. There was a correlation between MEP facilitation and individual performance ( r = −.64; P < .05), but no difference in MEP size associated with task difficulty ( P > .05). In conclusion, corticospinal excitability exhibits a large increase during the precision task. This effect needs to be confirmed in neurological populations to potentially provide a simple and non-invasive approach to increase corticospinal drive during gait rehabilitation.

Funder

ERA-Net Neuron

Fonds de Recherche du Québec - Santé

Universite Laval

Neuroscience thematic research centre

Centre for Interdisciplinary Research in Rehabilitation and Social Integration

Fonds de recherche du Québec Santé

Emeritus Research Scholar Award from Fonds de recherche Québec – Santé

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3