Electrical Stimulation of Abdominal Muscles to Produce Cough in Spinal Cord Injury

Author:

McBain Rachel A.12,Boswell-Ruys Claire L.123,Lee Bonsan B.123,Gandevia Simon C.12,Butler Jane E.12

Affiliation:

1. Neuroscience Research Australia, Randwick, NSW, Australia

2. University of New South Wales, Randwick, NSW, Australia

3. Prince of Wales Hospital, Randwick, NSW, Australia

Abstract

Background. Surface electrical stimulation of the abdominal muscles, with electrodes placed in the posterolateral position, combined with a voluntary cough can assist clearance of airway secretions in individuals with high-level spinal cord injury (SCI). Objective. To determine whether an increase in stimulus intensity of the trains of electrical stimuli delivered to the expiratory muscles has an increasing effect on a stimulated voluntary cough and to determine at which stimulus intensity a plateau of cough peak expiratory flow occurs. Methods. In 7 healthy individuals with a SCI at and above C7, gastric pressure ( Pga), esophageal pressure ( Pes), peak expiratory cough flow (PEFcough), and expiratory volume were measured as participants coughed voluntarily with simultaneous trains of electrical stimuli delivered over the abdominal muscles (50 Hz, 1-s duration). The intensity of the stimulation was increased incrementally. Results: A plateau in PEFcough occurred in all 7 individuals at a mean of 211 ± 29 mA (range 120-360 mA). Peak values reached for Pga, Pes, and PEFcough were 83.0 ± 8.0 cm H2O, 66.1 ± 5.6 cm H2O, and 4.0 ± 0.4 l/s respectively. Conclusions. The plateau in expiratory cough flow that was associated with increasing expiratory pressures is indicative of dynamic airway compression. This suggests that the evoked cough will be effective in creating more turbulent airflow to further assist in dislodging mucus and secretions.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3