tDCS-Enhanced Consolidation of Writing Skills and Its Associations With Cortical Excitability in Parkinson Disease: A Pilot Study

Author:

Broeder Sanne1ORCID,Nackaerts Evelien1,Cuypers Koen12,Meesen Raf12,Verheyden Geert1,Nieuwboer Alice1

Affiliation:

1. KU Leuven, Leuven, Belgium

2. Hasselt University, Diepenbeek, Belgium

Abstract

Background. Learning processes of writing skills involve the re-engagement of previously established motor programs affected by Parkinson disease (PD). To counteract the known problems with consolidation in PD, transcranial direct current stimulation (tDCS) could be imperative to achieve a lasting regeneration of habitual motor skills. Objective. To examine tDCS-enhanced learning of writing and explore alterations in cortical excitability after stimulation in PD compared with healthy controls (HCs). Methods. Ten patients and 10 HCs received 2 training sessions combined with 20 minutes of 1-mA anodal tDCS or sham on the left primary motor cortex in a randomized crossover design. Writing skills on a tablet and paper were assessed at baseline, after training, and after 1 week of follow-up. Before and immediately after the intervention, cortical excitability and inhibition were measured during rest and activity. Results. Writing amplitude and velocity improved when practice was tDCS supplemented compared with sham in PD. Benefits were sustained at retention for trained and untrained tasks on the tablet as well as for writing on paper. No improvements were found for HCs. Reduced resting motor thresholds after tDCS indicated tDCS-enhanced cortical excitability. Additionally, increments in motor-evoked potential amplitudes correlated with improved writing in PD, whereas HCs showed the opposite pattern. Conclusion. Our results endorse the usefulness of tDCS-boosted learning in PD, at least when applied to improving writing capacity. Although further confirmatory studies are needed, these novel findings are striking because tDCS-mediated consolidation was found for learning a motor task directly affected by PD.

Funder

Research Foundation Flanders

Internal Funds of the KU Leuven

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3