Kinematic Robot-Based Evaluation Scales and Clinical Counterparts to Measure Upper Limb Motor Performance in Patients With Chronic Stroke

Author:

Bosecker Caitlyn1,Dipietro Laura1,Volpe Bruce2,Igo Krebs Hermano3

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

2. Weill Medical College of Cornell University, New York, New York, USA

3. Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, , Weill Medical College of Cornell University, New York, New York, USA, University of Maryland, Baltimore, Maryland, USA

Abstract

Background. Human-administered clinical scales are the accepted standard for quantifying motor performance of stroke subjects. Although they are widely accepted, these measurement tools are limited by interrater and intrarater reliability and are time-consuming to apply. In contrast, robot-based measures are highly repeatable, have high resolution, and could potentially reduce assessment time. Although robotic and other objective metrics have proliferated in the literature, they are not as well established as clinical scales and their relationship to clinical scales is mostly unknown. Objective. To test the performance of linear regression models to estimate clinical scores for the upper extremity from systematic robot-based metrics. Methods. Twenty kinematic and kinetic metrics were derived from movement data recorded with the shoulder-and-elbow InMotion2 robot (Interactive Motion Technologies, Inc), a commercial version of the MIT-Manus. Kinematic metrics were aggregated into macro-metrics and micro-metrics and collected from 111 chronic stroke subjects. Multiple linear regression models were developed to calculate Fugl-Meyer Assessment, Motor Status Score, Motor Power, and Modified Ashworth Scale from these robot-based metrics. Results. Best performance—complexity trade-off was achieved by the Motor Status Score model with 8 kinematic macro-metrics ( R = .71 for training; R = .72 for validation). Models including kinematic micro-metrics did not achieve significantly higher performance. Performances of the Modified Ashworth Scale models were consistently low ( R = .35-.42 for training; R = .08-.17 for validation). Conclusions. The authors identified a set of kinetic and kinematic macro-metrics that may be used for fast outcome evaluations. These metrics represent a first step toward the development of unified, automated measures of therapy outcome.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3