Spectral Analyses of Wrist Motion in Individuals Poststroke

Author:

Wade Eric1,Chen Christina2,Winstein Carolee J.2

Affiliation:

1. University of Tennessee, Knoxville, TN, USA

2. University of Southern California, Los Angeles, CA, USA

Abstract

Background. Upper extremity use in daily life is a critical ingredient of continued functional recovery after cerebral stroke. However, time-evolutions of use-dependent motion quality are poorly understood due to limitations of existing measurement tools. Objective. Proof-of-concept study to determine if spectral analyses explain the variability of known temporal kinematic movement quality (ie, movement duration, number of peaks, jerk) for uncontrolled reach-to-grasp tasks. Methods. Ten individuals with chronic stroke performed unimanual goal-directed movements using both hands, with and without task object present, wearing accelerometers on each wrist. Temporal and spectral measures were extracted for each gesture. The effects of performance condition on outcome measures were determined using 2-way, within subject, hand (nonparetic vs paretic) × object (present vs absent) analysis of variance. Regression analyses determined if spectral measures explained the variability of the temporal measures. Results. There were main effects of hand on all 3 temporal measures and main effects of object on movement duration and peaks. For the paretic limb, spectral measures explain 41.2% and 51.1% of the variability in movement duration and peaks, respectively. For the nonparetic limb, spectral measures explain 40.1%, 42.5%, and 27.8% of the variability of movement duration, peaks, and jerk, respectively. Conclusions. Spectral measures explain the variability of motion efficiency and control in individuals with stroke. Signal power from 1.0 to 2.0 Hz is sensitive to changes in hand and object. Analyzing the evolution of this measure in ambient environments may provide as yet uncharted information useful for evaluating long-term recovery.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3