Neuroprotective Effects of Exercise on the Morphology of Somatic Motoneurons Following the Death of Neighboring Motoneurons

Author:

Chew Cory1,Sengelaub Dale R.1ORCID

Affiliation:

1. Indiana University, Bloomington, IN, USA

Abstract

Background. Motoneuron loss is a severe medical problem that can result in loss of motor control and eventually death. We have previously demonstrated that partial motoneuron loss can result in dendritic atrophy and functional deficits in nearby surviving motoneurons, and that treatment with androgens can be neuroprotective against this dendritic atrophy. Exercise has also been shown to be protective following a variety of neural injury models and, in some cases, is dependent on androgen action. Objective. In this study, we explored whether exercise shows the same neuroprotective effect on induced dendritic atrophy as that seen with androgen treatment. Methods. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Following saporin injections, some animals were allowed free access to a running wheel attached to their home cages. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in 3 dimensions. Results. Dendritic arbor lengths of animals allowed to exercise were significantly longer than those not allowed to exercise. Conclusions. These findings indicate that exercise following neural injury exerts a protective effect on motoneuron dendrites comparable to that seen with exogenous androgen treatment.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3