Identifying Homogeneous Subgroups in Neurological Disorders

Author:

Tanadini Lorenzo G.12,Steeves John D.3,Hothorn Torsten2,Abel Rainer45,Maier Doris65,Schubert Martin15,Weidner Norbert75,Rupp Rüdiger75,Curt Armin15

Affiliation:

1. Spinal Cord Injury Centre, Balgrist University Hospital, Zurich, Switzerland

2. Division of Biostatistics, Institute for Social and Preventive Medicine, University of Zurich, Zurich, Switzerland

3. ICORD, University of British Columbia and Vancouver Coastal Health, Vancouver, British Columbia, Canada

4. Trauma Center Bayreuth, Bayreuth, Germany

5. EMSCI Study Group

6. Trauma Center Murnau, Murnau, Germany

7. Spinal Cord Unjury Center, Heidelberg University Hospital, Heidelberg, Germany

Abstract

Background. The reliable stratification of homogeneous subgroups and the prediction of future clinical outcomes within heterogeneous neurological disorders is a particularly challenging task. Nonetheless, it is essential for the implementation of targeted care and effective therapeutic interventions. Objective. This study was designed to assess the value of a recently developed regression tool from the family of unbiased recursive partitioning methods in comparison to established statistical approaches (eg, linear and logistic regression) for predicting clinical endpoints and for prospective patients’ stratification for clinical trials. Methods. A retrospective, longitudinal analysis of prospectively collected neurological data from the European Multicenter study about Spinal Cord Injury (EMSCI) network was undertaken on C4-C6 cervical sensorimotor complete subjects. Predictors were based on a broad set of early (<2 weeks) clinical assessments. Endpoints were based on later clinical examinations of upper extremity motor scores and recovery of motor levels, at 6 and 12 months, respectively. Prediction accuracy for each statistical analysis was quantified by resampling techniques. Results. For all settings, overlapping confidence intervals indicated similar prediction accuracy of unbiased recursive partitioning to established statistical approaches. In addition, unbiased recursive partitioning provided a direct way of identification of more homogeneous subgroups. The partitioning is carried out in a data-driven manner, independently from a priori decisions or predefined thresholds. Conclusion. Unbiased recursive partitioning techniques may improve prediction of future clinical endpoints and the planning of future SCI clinical trials by providing easily implementable, data-driven rationales for early patient stratification based on simple decision rules and clinical read-outs.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3