Epidural Spinal Cord Stimulation Improves Motor Function in Rats With Chemically Induced Parkinsonism

Author:

Zhong Hui1ORCID,Zhu Chunni1,Minegishi Yoshihiko1,Richter Franziska1,Zdunowski Sharon1,Roy Roland R.1,Vissel Bryce23,Gad Parag12,Gerasimenko Yury14,Chesselet Marie-Francoise1,Edgerton V. Reggie125

Affiliation:

1. University of California Los Angeles, Los Angeles, CA, USA

2. University of Technology Sydney, Ultimo, New South Wales, Australia

3. St. Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia

4. Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia

5. Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain

Abstract

Background. Epidural stimulation of the spinal cord can reorganize and change the excitability of the neural circuitry to facilitate stepping in rats with a complete spinal cord injury. Parkinson’s disease results in abnormal supraspinal signals from the brain to the spinal cord that affect the functional capacity of the spinal networks. Objective. The objective was to determine whether epidural stimulation (electrical enabling motor control, eEmc) of the lumbosacral spinal cord can reorganize the spinal networks to facilitate hindlimb stepping of rats with parkinsonism. Methods. A unilateral 6-OHDA (6-hydroxydopamine) lesion of the nigrostriatal pathway was used to induce parkinsonism. Sham rats (N = 4) were injected in the same region with 0.1% of ascorbic acid. Stimulation electrodes were implanted epidurally at the L2 and S1 (N = 5) or L2 (N = 5) spinal levels. Results. The 6-OHDA rats showed severe parkinsonism in cylinder and adjusting step tests and were unable to initiate stepping when placed in a running wheel and dragged their toes on the affected side during treadmill stepping. During eEmc, the 6-OHDA rats initiated stepping in the running wheel and demonstrated improved stepping quality. Conclusion. Stepping was facilitated in rats with parkinsonism with spinal cord stimulation. The underlying assumption is that the normal functional capacity of spinal networks is affected by supraspinal pathology associated with Parkinson’s disease, which either generates insufficient or abnormal descending input to spinal networks and that eEmc can appropriately modulate spinal and supraspinal networks to improve the motor deficits.

Funder

NIH Office of the Director

Michael J. Fox Foundation for Parkinson’s Research

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3