Broad Therapeutic Time Window for Driving Motor Recovery After TBI Using Activity-Dependent Stimulation

Author:

Hudson Heather M.1,Guggenmos David J.1ORCID,Azin Meysam2,Vitale Nicholas3,McKenzie Katelyn A.4ORCID,Mahnken Jonathan D.4,Mohseni Pedram2,Nudo Randolph J.15ORCID

Affiliation:

1. Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA

2. Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA

3. Department of Electrical Engineering, Stanford University, Stanford, CA, USA

4. Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA

5. Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA

Abstract

Background: After an acquired injury to the motor cortex, the ability to generate skilled movements is impaired, leading to long-term motor impairment and disability. While rehabilitative therapy can improve outcomes in some individuals, there are no treatments currently available that are able to fully restore lost function. Objective: We previously used activity-dependent stimulation (ADS), initiated immediately after an injury, to drive motor recovery. The objective of this study was to determine if delayed application of ADS would still lead to recovery and if the recovery would persist after treatment was stopped. Methods: Rats received a controlled cortical impact over primary motor cortex, microelectrode arrays were implanted in ipsilesional premotor and somatosensory areas, and a custom brain–machine interface was attached to perform the ADS. Stimulation was initiated either 1, 2, or 3 weeks after injury and delivered constantly over a 4-week period. An additional group was monitored for 8 weeks after terminating ADS to assess persistence of effect. Results were compared to rats receiving no stimulation. Results: ADS was delayed up to 3 weeks from injury onset and still resulted in significant motor recovery, with maximal recovery occurring in the 1-week delay group. The improvements in motor performance persisted for at least 8 weeks following the end of treatment. Conclusions: ADS is an effective method to treat motor impairments following acquired brain injury in rats. This study demonstrates the clinical relevance of this technique as it could be initiated in the post-acute period and could be explanted/ceased once recovery has occurred.

Funder

U.S. Department of Defense

National Institute of Neurological Disorders and Stroke

Landon Center on Aging.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3