Relating Brain Damage to Brain Plasticity in Patients With Multiple Sclerosis

Author:

Tomassini Valentina1234,Johansen-Berg Heidi12,Jbabdi Saad1,Wise Richard G.5,Pozzilli Carlo3,Palace Jacqueline2,Matthews Paul M.167

Affiliation:

1. Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK

2. Clinical Neurology, Nuffield Dept of Clinical Neurosciences, University of Oxford, UK

3. Dept of Neurology and Psychiatry, “Sapienza” University of Rome, Rome, Italy

4. Institute of Psychological Medicine and Neurological Sciences, School of Medicine, Cardiff University, Cardiff, UK

5. Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK

6. GSK Clinical Imaging Centre, Hammersmith Hospital, London, UK

7. Centre for Clinical Neuroscience, Imperial College, London, UK

Abstract

Background. Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage. Objective. Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage. Methods. 23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan. Results. Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls. Conclusions. Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3