SIRRACT

Author:

Dorsch Andrew K.1,Thomas Seth1,Xu Xiaoyu1,Kaiser William1,Dobkin Bruce H.1,Emara Tamer,Edwards Dylan,Fonzetti Pasquale,Maasch John,Lee Sam-Gyu,Owolabi Mayowa O.,Hamzat Talhatu K.,LeBlanc Corey J.,Morse Regina,Swaminathan Narasimman,Karatas Gulcin Kaymak,Boza Roser,Brown Allen W.,Miyai Ichiro,Kawano Teiji,Chen Ssu-Yuan,Hanger H. Carl,Zucconi Carla,Mammi Silvia,Ghislanzoni Chiara,Juan Francisco,Lang Catherine E.

Affiliation:

1. University of California, Los Angeles, CA, USA

Abstract

Background. Walking-related disability is the most frequent reason for inpatient stroke rehabilitation. Task-related practice is a critical component for improving patient outcomes. Objective. To test the feasibility of providing quantitative feedback about daily walking performance and motivating greater skills practice via remote sensing. Methods. In this phase III randomized, single blind clinical trial, patients participated in conventional therapies while wearing wireless sensors (triaxial accelerometers) at both ankles. Activity-recognition algorithms calculated the speed, distance, and duration of walking bouts. Three times a week, therapists provided either feedback about performance on a 10-meter walk (speed only) or walking speed feedback plus a review of walking activity recorded by the sensors (augmented). Primary outcomes at discharge included total daily walking time, derived from the sensors, and a timed 15-meter walk. Results. Sixteen rehabilitation centers in 11 countries enrolled 135 participants over 15 months. Sensors recorded more than 1800 days of therapy, 37 000 individual walking bouts, and 2.5 million steps. No significant differences were found between the 2 feedback groups in daily walking time (15.1 ± 13.1 vs 16.6 ± 14.3 minutes, P = .54) or 15-meter walking speed (0.93 ± 0.47 vs 0.91 ± 0.53 m/s, P = .96). Remarkably, 30% of participants decreased their total daily walking time over their rehabilitation stay. Conclusions. In this first trial of remote monitoring of inpatient stroke rehabilitation, augmented feedback beyond speed alone did not increase the time spent practicing or improve walking outcomes. Remarkably modest time was spent walking. Wireless sensing, however, allowed clinicians to audit skills practice and provided ground truth regarding changes in clinically important, mobility-related activities.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3