Effect of Strength Training on Jump-Landing Biomechanics in Adolescent Females

Author:

Herman Daniel C.1,Pritchard Kimberly A.2,Cosby Nicole L.3,Selkow Noelle M.4

Affiliation:

1. Department of Physical Medicine and Rehabilitation, University of California, Davis, Davis, California

2. Division of Athletic Training, Shenandoah University, Winchester, Virginia

3. College of Health Sciences, Point Loma Nazarene University, San Diego, California

4. School of Kinesiology and Recreation, Illinois State University, Normal, Illinois

Abstract

Background: Sex-based differences in neuromuscular characteristics relevant to anterior cruciate ligament (ACL) injury risk may arise as compensation for divergent strength development during puberty. Strength training during this period may prevent the development of these undesirable neuromuscular characteristics. Hypothesis: Strength-trained middle school girls will have improved jump-landing biomechanics compared with control participants. Study Design: Cohort study. Level of Evidence: Level 3. Methods: Maximum voluntary isometric contraction in hip extension and abduction and knee extension and flexion as well as Landing Error Scoring System (LESS) scores were collected for healthy female middle school students of grades 6 to 8. Strength-training participants (STR: N = 30; height, 1.63 ± 0.07 m; mass, 48.1 ± 7.6 kg; age, 12.5 ± 1.0 y) were matched with control participants (CON: N = 30; height, 1.60 ± 0.09 m; mass, 47.2 ± 8.9 kg; age, 12.6 ± 0.9 y). The training consisted of a 6-month strength-training program administered through a gym class curriculum that targeted the lower extremity. A repeated-measures mixed-model analysis of variance was used for comparisons between groups and across time (α = 0.05). Stepwise linear regression was used to examine the relationship between strength change and LESS score change. Results: Strength values (N·m/kg) increased across time and to a greater degree in STR for hip extension (baseline 3.98 ± 1.15 vs follow-up 4.77 ± 1.80), hip abduction (4.22 ± 1.09 vs 5.13 ± 2.55), and knee flexion (3.27 ± 0.62 vs 3.64 ± 1.40) compared with CON. LESS grades significantly decreased across time in STR (5.58 ± 1.21 vs 4.86 ± 1.44) and were significantly lower than CON (5.98 ± 1.42) at follow-up ( P < 0.001). The change in hip extension and knee extension strength explained 67% of the variance ( P < 0.001) in the LESS change score in the STR group. Conclusion: A school-based strength-training program that focused on hip and knee musculature significantly improved jump-landing biomechanics (as determined by LESS) relevant to ACL injury risk. Further investigation using different strength-training approaches in this age group is warranted. Clinical Relevance: Strength training during adolescence holds promise as an injury prevention program. The use of a school-based approach is novel and may represent a robust opportunity for injury prevention programs, as physical education class is often mandatory in this age group.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3