Influence of Feet Position and Execution Velocity on Muscle Activation and Kinematic Parameters During the Inclined Leg Press Exercise

Author:

Martín-Fuentes Isabel1,Oliva-Lozano José M.1,Muyor José M.12

Affiliation:

1. Health Research Centre. University of Almería, Almería, Spain

2. Laboratory of Kinesiology, Biomechanics and Ergonomics (KIBIOMER Lab) Research Central Services, University of Almería, Almería, Spain

Abstract

Background: The leg press is one of the most typical exercises for strengthening the lower limbs. The objectives of this study were to compare 5 inclined leg press exercise conditions, varying the feet width stance (100% or 150% hip width), the feet rotation (0° or 45° external rotation) on the footplate and using 2 different movement velocities (MVs; maximum intended, and 2:2 seconds steady-paced velocities) to determine their effect on muscle activation as well as on the kinematic parameters between trained men and trained women. Hypotheses: There will be no significant differences in muscle activation with regard to the feet position. The higher the MV, the greater the muscle activation. Study Design: A cross-sectional cohort study. Level of Evidence: Level 3. Methods: A repeated-measures between-group design was performed to examine muscle activation and kinematic parameters for the different conditions between gender groups. The level of significance was set at alpha = 0.05 for all statistical analyses. Results: Muscle activation presented no differences between conditions regarding feet width stance or feet rotation. Furthermore, muscle activation was greater during positive phases than negative phases of the exercise for all conditions and was also greater under maximum intended velocity conditions compared with steady-paced conditions. Otherwise, the muscle activation pattern presented slight differences by gender. In men, the greatest muscle activation was for the vastus medialis, followed by the vastus lateralis (VL), rectus femoris (RF), and gluteus medialis (GMED), while in women, the greatest muscle activation was for the vastus medialis, followed by the RF, VL, and GMED. Finally, greater mean propulsive velocity, maximum velocity, maximum power, and footplate displacement values were reported for men than for women under all the conditions. Conclusion: The inclined leg press exercise produces the highest muscle activation in the vastus medialis, regardless of the velocity, feet stance, or gender. Clinical Relevance: Given that there are no differences in muscle activation regarding the feet stance, a participant’s preferred feet stance should be encouraged during the inclined leg press exercise. Furthermore, the MV would preferably depend on the session objective (a training or a rehabilitation program), being aware that there is greater muscle activation at higher speeds. The inclined leg press exercise could be performed as a closed kinetic chain exercise when the main objective is to activate the vastus medialis.

Funder

ministerio de economía, industria y competitividad, gobierno de españa

ministerio de ciencia, innovación y universidades

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Resistance Training Technique to Maximize Muscle Hypertrophy: A Narrative Review;Journal of Functional Morphology and Kinesiology;2023-12-29

2. Backseat Inclination Affects the Myoelectric Activation During the Inclined Leg Press Exercise in Recreationally Trained Men;Journal of Strength and Conditioning Research;2023-05-15

3. Foot and Ankle Awareness in the Athlete;Sports Health: A Multidisciplinary Approach;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3