The Effects of Fatigue on Muscle Synergies in the Shoulders of Baseball Players

Author:

Thomas Stephen J.1,Castillo Gabriel C.2,Topley Matthew2,Paul Ryan W.3ORCID

Affiliation:

1. Thomas Jefferson University Department of Exercise Science, Philadelphia, Pennsylvania

2. Temple University Department of Kinesiology, Philadelphia, Pennsylvania

3. Rothman Orthopaedic Institute, Philadelphia, Pennsylvania

Abstract

Background: Muscle synergies are defined as the central nervous system’s organizational structure for movement. Muscle synergies change after muscular fatigue, with certain synergies assuming the primary role to compensate for fatigue within another muscle synergy. Owing to the high eccentric forces imposed upon the external rotators (ie, posterior rotator cuff), pitchers that continue to throw while fatigued are at a significantly higher risk of shoulder and/or elbow injury; however, the neuromuscular compensation strategies of baseball players in response to fatigue are currently unknown. Hypothesis: Players would utilize the same muscle synergy structure following external rotation (ER) fatigue; however, muscle coefficients of nonfatigued muscles would increase (ie, compensate for the external rotators) after fatigue. Study Design: Cross-sectional study conducted in a controlled, laboratory setting. Methods: Nine players from an intercollegiate competitive club baseball team voluntarily participated in this study. Surface electromyography was used on 14 muscles of the glenohumeral and scapulothoracic joints of the dominant arm during a reaching protocol. Players completed a baseline reaching protocol (prefatigue), then an ER fatigue protocol until maximum concentric ER was reduced by 40%, and finally repeated the same reaching protocol (postfatigue). Principal component analysis was used to extract muscle synergies, the variance accounted for (VAF) of each synergy, and muscle coefficients. Prefatigue was compared with postfatigue using paired t tests for all dependent variables. Results: Four muscle synergies were extracted for both pre- and postfatigue. The VAF for the ER/abduction synergy decreased significantly (prefatigue, 34.6%; postfatigue, 32.4%; P = 0.03), showing a decreased reliance on ER/abduction during the reaching task after fatigue. Within synergy 1, the pectoralis major muscle coefficient (−0.489 vs −0.552; P = 0.01; effect size = 1.68) decreased significantly from prefatigue to postfatigue, indicating that the pectoralis major assumed more of an antagonist role during ER/abduction. Within synergy 2 (forward reaching), there were no significant changes in VAF or muscle coefficients observed. For the third synergy, muscle coefficients increased for the serratus anterior ( P = 0.02) and middle deltoid ( P = 0.01), whereas in the fourth synergy, the pectoralis major ( P = 0.01) increased and teres major ( P = 0.01) and biceps brachii ( P = 0.05) muscle coefficients decreased. Conclusion: The decreased VAF of the ER/abduction synergy after fatigue indicate that other muscles within that synergy could not fully compensate to maintain function. Interestingly, the changes in muscle coefficients suggest that players relied less on the internal rotation (IR) synergy and more on the cross-body synergy following fatigue. This may be due to imbalances between ER and IR while maintaining balance between cross-abduction and adduction. Clinical Relevance: Clinicians may consider implementing low-load, high-repetition training programs to develop posterior shoulder endurance and prolong the onset of muscular fatigue.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3