Integrated design and real-time implementation of an adaptive, predictive light controller

Author:

Colaco SG1,Kurian CP2,George VI3,Colaco AM4

Affiliation:

1. Department of Electrical Engineering and Electronics Engineering, St. Joseph Engineering College, Mangalore, India

2. Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal, India

3. Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, India

4. Department of Electrical and Electronics Engineering, NMAMIT, Nitte, India

Abstract

Daylight–electric light integrated schemes encompassing soft computing models have been perceived as a lucrative option for lighting energy conservation. This paper exploits the quintessence of design and real-time implementation of an adaptive predictive control strategy for robust control of a daylight–electric light integrated scheme. To elicit daylight variations, occupancy detection and user preferences an online self-adaptive, predictive control algorithm is structured for real-time control of electric lights and window blinds. The adaptive, predictive model entails integration of an online, adaptive daylight illuminance predictor in conjunction with an electric light intensity control algorithm for interior illuminance regulation and a fuzzy-logic based window blind control algorithm to eliminate glare and solar heat gain. The control algorithm modelled with real-time sensor information administers an online process of identification, prediction and parameter adaptation. The prototype controller is successfully implemented in a test chamber. A real-time user-friendly simulator provides an online visualisation of illuminance performance indicators and control of the process. The anticipated synergetic effects of the online control algorithm validated in the test chamber highlights the benefits of the scheme in terms of glare control, illuminance uniformity and energy efficiency.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3