Effects of blue-enriched white light with same correlated colour temperature on visual fatigue

Author:

Zhang Y1ORCID,Tu Y1,Wang L1,Shi Y1

Affiliation:

1. School of Electronic Science and Engineering, Southeast University, Nanjing, China

Abstract

Visual fatigue has become a public health issue, while the relevant retinal mechanism and characteristics of blue light that induce visual fatigue have been rarely studied. In the retina, both short wavelength-sensitive (S) cones and melanopsin-containing intrinsically photoreceptive retinal ganglion cells (ipRGCs) are sensitive to blue light, and their responses are opposite in pupil mediation. Thus, effects of blue-enriched white light with different S-cone-opic Equivalent Daylight Illuminance (EDI) on visual fatigue was investigated, maintaining the same melanopic EDI to avoid interferences of melanopsin-containing ipRGCs. Two white illuminants (one with low S-cone-opic EDI, the other with high S-cone-opic EDI) were characterized based on α-opic EDI with the same correlated colour temperature and illuminance. Melanopic EDI was lower than S-cone-opic EDI of these two illuminants. Psychological, visual, physiological and cognitive performances were measured to investigate visual fatigue. Results showed that blue-enriched white light with high S-cone-opic EDI can induce visual fatigue. Participants felt more discomfort in their eyes under high S-cone-opic EDI along with the decline of tear film stability and changes of heart rhythm. Furthermore, the reaction time in a memory task increased significantly under high S-cone-opic EDI. The findings provide new insights into the optimization of indoor lighting environments for human health.

Funder

National Key Research and Development Program of China

Basic Research Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3