Photomorphogenesis of wheat sprouts with LED irradiation of different intensities

Author:

Han T12,Astafurova T3,Turanov S1ORCID,Burenina A3,Butenkova A3,Surnina E3,Valiev D12

Affiliation:

1. National Research Tomsk Polytechnic University, Tomsk, Russia

2. Chongqing University of Arts and Sciences, Chongqing, China

3. National Research Tomsk State University, Tomsk, Russia

Abstract

Definition of the growth and development characteristics of plants in varied light conditions is a key factor for the creation of highly efficient light facilities for plant cultivation. Experimental research was conducted using an LED irradiation facility with photosynthetic photon flux densities ranging from 0 to 261 μmol m−2 s−1 and a continuous spectrum with maxima at 445 and 600 nm. Under the maximum photosynthetic photon flux density (261 μmol m− 2 s−1) wheat germs demonstrated diminishing leaf surface with high values of specific leaf area, enhanced pubescence of ground tissues, increases in the number of stomata on the upper epidermis and palisade, and an increase in the thickness of the leaves as well as an increase in carotenoids but a decrease in the chlorophyll a+b/carotenoids relation. It was revealed that the optimum level of photosynthetic photon flux density for the referred spectrum was in the range from 82 to 100 µmol m−2 s−1, which may enable a reduction of irradiance under specific conditions during early development with no harm to the plants while minimizing energy consumption during cultivation.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3