Impact of the LED-based light source working regime on the degradation of polymethyl methacrylate

Author:

Sikora A1ORCID,Tomczuk K2

Affiliation:

1. Division of Electrotechnology and Materials Science, Electrotechnical Institute, Wrocław, Poland

2. Power Electronics and Transport Department, Electrotechnical Institute, Warsaw, Poland

Abstract

The popularity of LED-based luminaires has increased enormously in recent years. Every such luminaire consists of several elements including a polymer-based transparent housing, yet some of the ageing aspects of specific luminaire materials have not been investigated. In this paper, we present research aimed at determining the impact of LED lamp powering mode on polymer material deterioration. In the experiment, three LED lamp operating systems based on two different pulse width modulation units and one DC power source were used to induce deterioration in a polymethyl methacrylate sample. Two types of LEDs, white and ultraviolet, were considered as the most significant in terms of the impact on the material. Observations of the surface's morphological changes were performed to enable non-destructive investigation of the degradation of the exposed samples. In order to obtain high roughness detection sensitivity, atomic force microscopy was used. We observed various ageing ratios of the material, despite the fact that total average optical energy for specific wavelengths was equal for all samples. The importance of these findings for designing modern luminaires is discussed.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3