Fourier transform near infrared spectroscopy as a tool to predict spawning status in Alaskan fishes with variable reproductive strategies

Author:

TenBrink Todd1ORCID,Neidetcher Sandra1,Arrington Morgan2,Benson Irina1ORCID,Conrath Christina3,Helser Thomas1

Affiliation:

1. NOAA National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, WA, USA

2. School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

3. NOAA National Marine Fisheries Service, Alaska Fisheries Science Center, Kodiak, AK, USA

Abstract

Fourier-transform near infrared (FT-NIR) spectroscopy of ovarian tissue was used to predict maturity status of fish species with variable reproductive strategies collected at limited time periods of their spawning cycle. Reference data were derived from histologically prepared tissue samples from four species: Pacific cod ( Gadus macrocephalus), walleye pollock ( Gadus chalcogrammus) , Greenland turbot ( Reinhardtius hippoglossoides) , and northern rockfish ( Sebastes polyspinis). Each data set was classified into reproductively immature (non-spawning) and reproductively mature (spawning-capable) categories. Principal component analysis of spectral data showed separation between ovarian tissues of spawning-capable and non-spawning females. Multivariate classification using partial least squares discriminant analysis indicated good discrimination based on spawning status with high predictive accuracy. Greenland turbot and northern rockfish showed clear distinction between ovaries of spawning-capable and non-spawning females and a model validation with 100% and 96.6% classification accuracy, respectively. Pacific cod and walleye pollock had more complicated reproductive patterns at time of collection and classification rates were still 96.6% and 92.1%. This study demonstrated the potential application of FT-NIR spectroscopy to predict spawning status from ovarian tissue even for species with complicated spawning patterns and for collections outside of the preferred spawning period. Future work may include the use of this technology to classify distinct oocyte development stages.

Funder

National Oceanic and Atmospheric Administration

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3