A systematic study on fluorescence contrast in near infrared diffuse transmittance imaging with indocyanine green

Author:

Waks Serra María V1ORCID,Grosenick Dirk2,Macdonald Rainer2,Pomarico Juan A1,Iriarte Daniela I1

Affiliation:

1. CIFICEN (UNCPBA – CICPBA – CONICET), Tandil, Argentina

2. Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany

Abstract

Near infrared fluorescence imaging is a sensitive, noninvasive technique for diagnostic applications in biomedical optics. The main purpose of this work is thus to explore how to improve the contrast of images obtained by near infrared light using a fluorescent extrinsic agent. Among different fluorophores, indocyanine green has been mostly studied because it is approved for use in humans. In this work, simulations and experimental studies on phantoms (systems that optically emulate biological tissues) are used to systematically investigate the influence of the increased intrinsic tissue absorption by adding indocyanine green. The experiments reproduce the situation of fluorescence imaging of carcinomas in the human breast, where the natural absorption due to neovascularization is increased by the injection of this fluorophore. Assuming measurements in transmission geometry, the breast is modeled by a homogeneous background medium containing a tumor-like inclusion (or lesion) with two- or threefold increased absorption. Fluorescence contrast is simulated over a broad range of dye concentrations using diffusion theory. Selected concentrations ratios are applied in experimental studies with laser excitation of indocyanine green fluorescence and with a charge-coupled device camera for fluorescence detection. Both simulations and experiments show that the intrinsic absorption of the inclusion strongly reduces the number of detected fluorescence photons and that the fluorescence contrast can be canceled or become even negative. It was found that for typical optical properties and geometrical conditions, in fluorescence imaging of breast cancer, a dye ratio of about 10:1 (lesion:background) is required to turn from negative to positive fluorescence contrast. Since such a high ratio is difficult to attain, raw fluorescence images need to be normalized by the intrinsic lesion absorption (without indocyanine green (ICG)) to enhance the presence of the dye in the lesion.

Funder

BMBF and MinCyT

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3