Fractional order modeling and recognition of nitrogen content level of rubber tree foliage

Author:

Hu Wenfeng12,Tang Rongnian2,Li Chuang2,Zhou Teng2,Chen Jing3,Chen Kai24ORCID

Affiliation:

1. School of Electrical and Information Engineering, Tianjin University, Tianjin, China

2. School of Mechanical and Electrical Engineering, Hainan University, Haikou, China

3. College of Forestry, Hainan University, Haikou, China

4. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China

Abstract

The Nondestructive estimation method of nitrogen content level of rubber tree foliage was investigated utilizing near infrared (NIR) spectroscopy and Grünwald-Letnikov fractional calculus. Four models, including partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), extreme learning machine (ELM) and convolutional neural networks (CNN) are applied to construct the nitrogen estimation model. The results show that models established by 0.6-order or 1.6-order spectra achieved better performance than models with integer-order spectra. Afterward, the successive projections algorithm (SPA) is applied to reduce the number of variables, which is critical for developing portable nitrogen-level detector devices for rubber trees. The PLS-DA method achieved the best performance with an optimal recognition rate (97.73%) using the 1.6-order spectra. The results suggest that nitrogen content of rubber trees could be reliably estimated by fractional calculus processed NIR spectra. The method proposed here has a wide range of applicability and can provide more useful information for NIR spectral analysis in agriculture as well as other fields.

Funder

National Natural Science Foundation of China

Key Research and Development Plan of Hainan Province

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3