Predicting quality, texture and chemical content of yam (Dioscorea alata L.) tubers using near infrared spectroscopy

Author:

Ehounou Adou Emmanuel12,Cornet Denis34ORCID,Desfontaines Lucienne5,Marie-Magdeleine Carine6,Maledon Erick47,Nudol Elie47,Beurier Gregory34,Rouan Lauriane34,Brat Pierre48,Lechaudel Mathieu48,Nous Camille9,N’Guetta Assanvo Simon Pierre12,Kouakou Amani Michel2ORCID,Arnau Gemma47

Affiliation:

1. Université Félix Houphouët Boigny, UFR Biosciences, Abidjan, Côte d’Ivoire

2. CNRA, Station de Recherche sur les Cultures Vivrières, Bouaké, Côte d’Ivoire

3. CIRAD, UMR AGAP Institut, F-34398 Montpellier, France

4. UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France

5. INRAE, UR 1321 ASTRO Agrosystèmes tropicaux. Centre de recherche Antilles-Guyane, Petit-Bourg, France

6. INRAE, UR 0143 URZ Unité de Recherches Zootechniques. Centre de recherche Antilles-Guyane, Petit-Bourg, France

7. CIRAD, UMR AGAP Institut, Petit-Bourg, Guadeloupe, France

8. CIRAD, UMR Qualisud, Capesterre-Belle-Eau, Guadeloupe, France

9. Cogitamus Laboratory, Laboratoire Cogitamus, Montpellier, France

Abstract

Despite the importance of yam ( Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.

Funder

Bill and Melinda Gates Foundation

European Regional Development Fund

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3