Application of neural networks for classifying softwood species using near infrared spectroscopy

Author:

Yang Sang-Yun12,Kwon Ohkyung3,Park Yonggun12,Chung Hyunwoo1,Kim Hyunbin1,Park Se-Yeong4,Choi In-Gyu125,Yeo Hwanmyeong12ORCID

Affiliation:

1. Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea

2. Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea

3. National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Republic of Korea

4. Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon, Republic of Korea

5. Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea

Abstract

Lumber species identification is an important issue for the wood industry. In this study, three types of neural networks (artificial neural network (ANN), deep neural network (DNN), and convolutional neural network (CNN)) were employed for classifying softwood lumber species using NIR spectroscopy. The results show that CNN, which is based on deep learning, was more stable than the other neural networks. In particular, the stability of the training process was remarkably improved in CNN models. During the training procedure, the validation accuracy of the CNN model was 99.3% for the raw spectra, 99.9% for the standard normal variate (SNV) spectra and 100.0% for the Savitzky-Golay second derivative spectra. Interestingly, there was little difference in the validation accuracies among the CNN models depending on mathematical preprocessing. The results showed that CNN is sufficiently adequate to classify the softwood lumber species.

Funder

National Research Foundation of Korea

Korea Forest Service

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3