A comparison of point and imaging visible-near infrared spectroscopy for determining soil organic carbon

Author:

Askari Mohammad Sadegh1,O'Rourke Sharon M2,Holden Nicholas M2

Affiliation:

1. Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2. UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland

Abstract

This study evaluated whether the accuracy of soil organic carbon measurement by laboratory hyperspectral imaging can match that of standard point spectroscopy operating in the visible–near infrared. Hyperspectral imaging allows a greater amount of spectral information to be collected from the soil sample compared to standard spectroscopy, accounting for greater sample representation. A total of 375 representative Irish soils were scanned by two-point spectrometers (a Foss NIR Systems 6500 labelled S-1 and a Varian FT-IR 3100 labelled S-2) and two laboratory hyperspectral imaging systems (two push broom line-scanning hyperspectral imaging systems manufactured by DV optics and Spectral Imaging Ltd, respectively, labelled S-3 and S-4). The objectives were (a) to compare the predictive ability of spectral datasets for soil organic carbon prediction for each instrument evaluated and (b) to assess the impact of imposing a common wavelength range and spectral resolution on soil organic carbon model accuracy. These objectives examined the predictive ability of spectral datasets for soil organic carbon prediction based on optimal settings of each instrument in (a) and introduced a constraint in wavelength range and spectral resolution to achieve common settings for instruments in (b). Based on optimal settings for each instrument, the deviation (root-mean square error of prediction) from the best fit line between laboratory measured and predicted soil organic carbon, ranked the instruments as S-1 (26.3 g kg−1) < S-2 (29.4 g kg−1) < S-3 (34.3 g kg−1) < S-4 (41.1 g kg−1). The S-1 model outperformed in all partial least squares regression performance indicators, and across all spectral ranges, and produced the most favourable outcomes in means testing, variance testing and identification of significant variables. It is assumed that a larger wavelength range produced more accurate soil organic carbon predictions for S-1 and S-2. Under common instrument settings, the prediction accuracy for S-3 that was almost equal to S-1. It is concluded that under standard operating procedures, greater soil sample representation captured by hyperspectral imaging can equal the quality of the spectra from point spectroscopy. This result is important for the development of laboratory hyperspectral imaging for soil image analysis.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3