Classification of amino resins and formaldehyde near infrared spectra using K-nearest neighbors

Author:

Gonçalves M12ORCID,Paiva NT2,Ferra JM2,Martins J13,Magalhães F1,Carvalho L13

Affiliation:

1. LEPABE – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal

2. EuroResinas – Indústrias Químicas SA, Sines, Portugal

3. DEMad – Instituto Politénico de Viseu, Viseu, Portugal

Abstract

Amino resins are synthetic adhesives that can be divided into three major types: urea–formaldehyde (UF), melamine–urea–formaldehyde (MUF), or melamine–formaldehyde (MF). When less than 5% of melamine is added to a UF resin, the resin is called a melamine-fortified UF (mUF) resin. The extensive application of these resins in wood-based products is due to their many advantages: ease of use, strong bonding, resistance to wear and abrasion, heat resistance, and relatively low price. Several near infrared (NIR) models have been developed for this type of adhesives and have been used in industrial plants. However, the NIR spectroscopy is sensitive to the type of resin (UF, MUF, MF, or mUF) and even to the synthesis process, therefore different NIR models must be constructed per resin basis. This work presents two methods: (a) a method to distinguish the NIR spectra of formaldehyde from the NIR spectra of amino resins, and (b) a method to classify the NIR spectra of amino resins by class of resin. The method for the separation of formaldehyde from amino resins achieved 100% correct classification for the dataset used. This method was based on defining a baseline cutoff for the NIR spectra at which there were no amino resins bonds overlapping formaldehyde bonds. For the classification of amino resins, this work used the methodology of K-nearest neighbors, up to 91 neighbors, and principal component analysis, up to 10 principal components. The best classification method obtained an accuracy of 96.1% and can be used industrially to automatically select the most suitable NIR model for amino resins, helping to reduce the time taken for an NIR analysis and automatically preventing the wrong selection of NIR models by an operator.

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3