Development of feature extraction method for near infrared spectroscopy using stepwise bayesian linear regression

Author:

Chen Zhifeng1,Pan Tianhong1ORCID,Wu Qiong2,Yu Xiaofeng2

Affiliation:

1. School of Electrical Engineering and Automation, Anhui University, Hefei, China

2. Hefei Customs District, Hefei, China

Abstract

Near infrared (NIR) spectra contain information regarding the analyte as well as uninformative wavelengths. To build high-performance data-driven models, key wavelengths with a strong correlation to the analyte must be selected. This study proposes a feature selection method called stepwise Bayesian linear regression (SBLR) for eliminating unrelated wavelengths, thereby enhancing the robustness of the constructed model. First, a random wavelength is selected from an optimal variable set, and the other wavelengths are placed in a candidate variable set. A Bayesian linear regression (BLR) is implemented by adding a new variable from the candidate set or removing a variable from the optimal set in each step. Furthermore, the BLR model is utilized to perform the F-test. Comparing with the critical value of the F-test with a significance level of α, the test determines whether the variable is retained in the optimal set. Finally, the extracted variables are used to construct a BLR model. The performance and generalization ability of the proposed method were validated. The physical explanation of extracted wavelengths is consistent with the perspective of chemical analysis based on the experiment, which provides a good understanding of the collected NIR spectral data. In addition, compared with traditional algorithms, such as partial least squares regression, least absolute shrinkage and selection operator, and stepwise regression, the proposed method reserves only a few of the effective wavelengths from the full NIR spectra. The proposed method demonstrates potential for key wavelength selection in NIR spectroscopy.

Funder

Major Special Science and Technology Project of Anhui Province

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3