Curve fitting in Fourier transform near infrared spectroscopy used for the analysis of bacterial cells

Author:

Krepelka Pavel1,Hynstova Iveta2,Pytel Roman3,Pérez-Rodríguez Fernando4,Roger Jean-Michel5,Drexler Petr1

Affiliation:

1. Department of Theoretical and Experimental Electrical Engineering, Brno University of Technology, Brno, Czech Republic

2. Výzkumny ústav mlékarenský s.r.o (the Dairy Research Institute), Prague, Czech Republic

3. Department of Food Technology, Mendel University in Brno, Brno, Czech Republic

4. Department of Bromatology and Food Technology, University of Cordoba, Córdoba, Spain

5. Information and Technologies for Agro-Processes, Cemagref, Montpellier Cedex, France

Abstract

Infrared spectroscopy is a prominent molecular technique for bacterial analysis. Within its context, near infrared spectroscopy in particular brings benefits over other vibrational approaches; these advantages include, for example, lower sensitivity to water, high penetration depth and low cost. However, near infrared spectroscopy is not popular within microbiology, because the spectra of organic samples are difficult to interpret. We propose a comparison of spectral curve-fitting methods, namely, techniques that facilitate the interpretation of most peaks, simplify the spectra and improve the prediction of bacterial species from the relevant near infrared spectra. The performances of three common curve-fitting algorithms and the technique based on the differential evolution were compared via a synthesized experimental spectrum. Utilizing the obtained results, the spectra of three different bacterial species were curve fit by optimized algorithm. The proposed algorithm decomposed the spectra to specific absorption peaks, whose parameters were estimated via the differential evolution approach initialized through Levenberg-Marquardt optimization; subsequently, the spectra were classified with conventional procedures and using the parameters of the revealed peaks. On a limited data set, the correct classification rate computed by partial least squares discriminant analysis was 95%. When we employed the peak parameters for the classification, the rate corresponded to 91.7%. According to the Gaussian formula, the parameters comprise the spectral peak position, amplitude and width. The most important peaks for bacterial discrimination were identified by analysis of variance and interpreted as N–H stretching bonds in proteins, cis bonds and CH2 absorption in fatty acids. We examined some aspects of the behaviour of standard curve-fitting algorithms and proposed differential evolution to optimize the fitting process. Based on the correct use of these algorithms, the near infrared spectra of bacteria can be interpreted and the full potential of near infrared spectroscopy in microbiology exploited.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Národní Agentura pro Zemědělsk Vzkum

Teaching and Research Facilities for Biotechnological Disciplines and Extension of Infrastructure

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3